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Abstract

In the majority of cases, there is no difficulty in diagnosing Cystic Fibrosis (CF). However, there may be wide variation in signs and
symptoms between individuals which encourage the scientific community to constantly improve the diagnostic tests available and develop
better methods to come to a final diagnosis in patients with milder phenotypes. This paper is the result of discussions held at meetings of
the European Cystic Fibrosis Society Diagnostic Network supported by EuroCareCF. CFTR bioassays in the nasal epithelium (nasal potential
difference measurements) and the rectal mucosa (intestinal current measurements) are discussed in detail including efforts to standardize the
techniques across Europe. New approaches to evaluate the sweat gland, future of genetic testing and methods on the horizon like CFTR
expression in human leucocytes and erythrocytes are discussed briefly.
© 2011 European Cystic Fibrosis Society. Published by Elsevier B.V. All rights reserved.
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1. Introduction

Sweat test, Cystic Fibrosis Transmembrane Conductance
Regulator (CFTR) mutation analysis and in vivo or ex vivo
CFTR bioassays are the core diagnostic tests currently used in
the cystic fibrosis (CF) clinic [1].
CFTR bioassays measure the voltage potentials created by

epithelial ion fluxes at the mucosal surface. These assays thus
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provide a direct assessment of physiology at the cellular and
the ion channel levels. Nasal potential difference (NPD) and
intestinal current measurements (ICM) are not widely avail-
able. Most assays are adaptations of the original techniques
described by Knowles et al. [2] and Middleton et al. [3] for
the measurement of NPD and Veeze et al. [4] and Mall et
al. [5] for ICM. During the EuroCareCF project, techniques
used in Europe were inventoried and steps taken towards
standardization of test performance.
The easiest, cheapest, most sensitive and specific test to

diagnose CF continues to be the determination of the chloride
(Cl−) concentration in sweat collected after stimulation of the
sweat gland by pilocarpine. Also for infants detected via CF
newborn screening it is advised to confirm the diagnosis of CF
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by the sweat test. This brings new challenges for an old test:
defining the cut-off for abnormal test results and the urgent
need in many institutions to replace old equipment by certified
equipment appropriate for safe testing of infants, assuring
strict quality control for this crucial diagnostic test. Several
consensus reports summarize current recommendations [1,6–
9]. New developments in the evaluation of the sweat duct
are however, underway. In section 3, we discuss briefly these
developments.
More than 1600 CFTR mutations have been described in

CF patients and/or subjects with CF like symptoms. CFTR
gene analysis is a useful diagnostic test, but the difficulty
remains that genotype analysis cannot be used to exclude CF,
as complete sequencing of the coding sequence of the CFTR
gene is not widely available. Which mutations to include in
the diagnostic panel as well as the sensitivity and specificity
of the panel used will depend on the ethnic and geographic
origin of the subject tested. In Northern European countries
the situation is relatively simple with up to 90% of mutations
being detected using a panel of about 30 mutations [10]. The
majority of CFTR mutations are rare and each account for
much less than 1% of the global population of CF patients. It
is therefore difficult to raise the sensitivity of the diagnostic
test further. Next generation sequencing technology may
provide a more powerful approach to CF genetic testing, but
the interpretation of the test result will remain the limitation.
Indeed criteria have been proposed to define a CF mutation,
but the ‘pathogenic significance’ of many missense mutations
is not known [6,11,12].
Finally, some non genetic blood tests with potential

diagnostic value are discussed in section 5.

2. CFTR bioassays in nasal epithelium, rectum and sweat
gland

2.1. Nasal PD

2.1.1. Physiologic rationale
The measurement of nasal transepithelial potential differ-

ence (TEPD), also known as nasal potential difference (NPD),
provides a direct and sensitive evaluation of sodium (Na+) and
chloride (Cl−) transport in nasal epithelial cells by assessment
of their bioelectric properties [2,3,13]. This serves not only as
a diagnostic aid in difficult cases where CFTR dysfunction is
suspected [14,15], but also as an endpoint in clinical trials to
measure the restoration of CFTR function [16].
The basic premise is that the bioelectric abnormality of

the CF nasal epithelium reflects the ion transport defects
observed in the lower airways and is due to mutations in the
CFTR gene. Because epithelia have an electrical resistance
across them, the active secretion or absorption of ions such
as Na+ and Cl− causes a potential difference (PD) or
voltage [17]. Different epithelia have different ion transport
characteristics and the magnitude of PD varies, depending on
the site of measurement. PD can be measured by using a
high impedance voltmeter between two electrodes, one on the
inside (serosal side) and one on the outside (mucosal side) of

the epithelium. The electrode on the outside (the exploring
electrode) rests against the surface of the target epithelium.
The internal electrode (the reference electrode) can be in
any internal compartment of the body, although generally
the subcutaneous tissue of the forearm is used (Fig. 1). On
paper this appears straightforward, however in practice, some
skill and experience are required to achieve accuracy and
repeatability with this method.

2.1.2. Global description of methods
The nasal cavity is accessible which makes it a good site to

examine the ion transport characteristics of airway epithelia.
From two to three centimeters within the nose, the squamous
(“skin type”) epithelium becomes a ciliated pseudostratified
columnar epithelium also characteristic of the more distal
airways. Employing the NPD technique, Knowles and his
colleagues demonstrated that Na+ absorption was the primary
ion transport activity in normal airway epithelia [13]. The
resulting PD on the airway surface is negative with reference
to the interstitium and in normal subjects is generally −15 to
−25 mV. This measurement is known as the basal or baseline
PD. Following insertion of the exploring electrode, the PD
often gradually changes over the first few minutes, termed
“stabilization of the PD”. The measurement continues with
sequential perfusion of compounds that inhibit the inwardly
directed Na+ conductance or augment the outwardly directed
Cl− conductance (Fig. 2). Amiloride, the epithelial Na+

channel (ENaC) blocking agent, is perfused and as Na+ is
not being absorbed by the cells, this causes the lumen to
become less negative thus causing the PD to veer towards
zero. After this a low (or zero) Cl− solution is perfused,
which causes electrogenic transport of Cl− out of the cell,
through CFTR Cl− channels. In non-CF epithelia, this results
in a rapid and often large hyperpolarisation of the PD,
which in the presence of amiloride is thought to represent
Cl− secretion. This increase in negative PD can be further
enhanced pharmacologically by the addition isoprenaline,
which augments CFTR-mediated Cl− secretion. Finally, ATP
is perfused which activates Cl− secretion through alternative,
non-CFTR, Cl− channels and serves as a marker that the
epithelium is viable.

2.1.3. Comparison of methods across Europe
Following the initial description of the nasal PD by

Knowles et al. [18] using a PE-50 tube, an alternate approach
was developed by Alton et al. [19] using a modified Foley 8
Fr urinary catheter. However, the modified Foley catheter did
not allow the measurement of drug and electrolyte solution
responses, so this in turn was changed to a double lumen
system [3]. Over the last few years, international collaboration
has grown and discussion on the use of NPD for diagnostic
purposes has focused on the comparability of results across
centres. Moreover, when using NPD as an outcome measure
in international trials aimed at correcting CFTR function,
results should be comparable between centres. In Europe, the
application of the NPD method as a diagnostic tool has been
implemented by individual CF centres without centralised
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Fig. 1. Typical NPD setup: (A) Multiple pumps for perfusion of the solutions, thermostatic bath for warming of the solutions, double-lumen nasal catheter
taped after visualisation of the nostril with a frontal light and a nasal speculum, agar-filled subcutaneous needle on the forearm connected to the reference
Calomel electrode. Laptop computer with PowerLab for recording. (B) Position of the catheter under the inferior turbinate. (C) Different nasal catheters in
use: from top to bottom PE50/PE90, Marquat with end-hole, Marquat with side-hole, modified Foley catheter.

procedures. This has led to the present situation in which
different CF centres have customized certain protocols with
marked variability between centres. During the EuroCareCF
project, we summarised the NPD procedures performed
across Europe (Table 1) by collecting operating procedures,
including a description of the set up and pictures of the
equipment used. We received information from 9 European
countries and 2 non-European countries (Israel and Australia)
who are participating in discussions of the European Cystic
Fibrosis Society-Diagnostic Network Working Group (ECFS-
DNWG).
There are differences in the equipment used including

the voltmeter (battery charged voltmeters, digital current
powered voltmeter, PowerLab), the registration device (chart
recorder, printer, computer) and the electrodes (calomels,
Ag/AgCl ECG electrodes, Ag/AgCl micropellet electrodes).
Connections with the serosal side are made via subcutaneous
needle or via skin abrasion. Different types of catheters are

used (PE tubing, adapted urinary double lumen catheter,
umbilical catheter) and conductance is realized by agar,
ECG electrode cream or perfusion with NaCl solution. Most
operators use an otoscope to inspect the epithelium and find
the site of most negative voltage, but in some CF centres the
location is found without visualisation. Large catheters are
associated with measurements on the nasal floor; the smaller
PE50 tubing allows measurements under the inferior turbinate.
Catheter position is fixed or kept in place manually during
the complete measurement. Exact solution composition (e.g.
low or zero chloride, pH buffer used), solution temperature, as
well as the method used for warming varies between different
CF centres.

2.1.4. NPD as a diagnostic test for CF: reference values
Nasal PD examines different aspects of transepithelial

ion transport by the nasal epithelium. In CF, this ion
transport profile is abnormal and the nasal PD measurement
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Fig. 2. NPD recordings from normal subject (left) and an individual with CF (right): When compared to normal subjects, individuals with CF have a more
negative basal PD, a larger PD change after perfusion of the nasal mucosa with amiloride to inhibit ENaC and very little change after perfusion with a low
chloride solution or isoproterenol in the presence of amiloride. ATP, a known stimulant of alternative chloride channels induces a large, but transient change in
PD in CF subjects. See text for more details.

Table 1
Differences in equipment and method used for NPD in CF centres

Site Skin
bridge

Reference
bridge

Sensing
bridge

Electrodes Exploring
catheter

Fluid
warmer

Temp.
solut.

Otoscope Voltmeter Recorder Site

Israel
(Jerusalem)

s.c.
butterfly

Agar in
butterfly

Custom
syringe
with agar
bridge

Calomel PE-50 Water
bath

34° Complete
reading

Battery PowerLab Under turb.

Netherlands
(Utrecht,
Rotterdam)

s.c.
needle

Agar in
PE-90

Agar in
PE-90

Ag/AgCl
pellet

Umbilical No Nd To
position

PowerLab PowerLab Under turb.

Belgium
(Brussels,
Leuven)

Abrasion Electrode
cream

Electrode
cream

Ag/AgCl
ECG

Urinary Water
bath

36.9° To
position

Battery Computer Along floor

Italy
(Verona)

s.c.
needle

NaCl in
PE+3way

NaCl in
PE+3way

Ag/AgCl
pellet

PE-50 Water-
jacketed
tube

37° To
position

US,
battery

PowerLab Under turb.

Germany
(Hannover)

s.c.
needle

Agar in
syringe

Agar in
PE-90

Ag/AgCl
pellet

Umbilical Water
bath

33° Sometimes US,
battery

Chart Under turb.

Sweden
(Stockholm)

Abrasion Electrode
cream

Electrode
cream

Ag/AgCl
ECG

PE No Nd No Battery Printer Along floor

UK
(Liverpool)

s.c.
needle

Agar in
butterfly

Agar in
PE

Calomel Custom
multilumen
+PE

No Nd To
position

Battery Chart Under turb.

France
(Paris)

Abrasion Electrode
cream

Electrode
cream

Ag/AgCl
ECG

Cust. double
lumen

Humidifier 36° To
position

Cust. Computer Under turb.

Australia
(Sidney)

Abrasion Electrode
cream

Electrode
cream

Ag/AgCl
ECG

Urinary Tried, no
difference

Nd No Battery Manually Along floor

Key: Skin bridge, connection between skin and reference bridge; Reference bridge, connection between skin bridge and reference electrode; Sensing bridge,
connection between sensing electrode and exploring catheter; Temp solute, temperature of solution at tip of exploring catheter; Site of measurement: nasal
floor or under the inferior turbinate.

distinguishes CF and non-CF [14,20,21]. In CF, there is
a much more negative basal PD due to uninhibited ENaC
activity transporting Na+ ions into the cell. As a result,
CF subjects have an increased reduction in PD following
perfusion with amiloride. CF subjects are also distinguished
by the absence or markedly reduced responses to perfusion
with low Cl− and isoprenaline solutions. All steps differ
between CF and controls, but the different responses to low
Cl− and isoprenaline are the best discriminator. The addition

of ATP or other purines to the low Cl− solution leads to
a large hyperpolarisation in CF tissues, presumably by non-
CFTR-mediated Cl− secretion. The initial recognition of this
response resulted in the examination of purinergic agents as
potential therapies for CF [22].
The line delineating CF from non-CF generally runs

around a basal PD of −30 mV and a Cl− free/isoprenaline
response of −5 to −10 mV, though many classical CF
subjects will have basal values of −50 mV, and combined Cl−
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responses of 0 mV, whereas non-CF subjects will have values
of −20 mV for basal PD and −30 mV for the combined
Cl− responses (Fig. 3). More recently, groups of patients
with mild/atypical/forme fruste CF have been described with
intermediate values, which are in keeping with sweat Cl−
values showing a gradual blurring of the boundaries for
individuals with mildest disease.

2.1.5. Factors known to influence NPD results
Over the last few years, a number of different systems, with

varied perfusion rates and compositions have been used across
Europe (Table 1). Regrettably, there have been few attempts to
compare the results obtained with new systems with existing
versions. However, standard reference values for (i) basal PD
and (ii) low Cl−/zero Cl− plus isoprenaline responses are
comparable between different CF centres (Fig. 3).
Measurements obtained with the exploring catheter posi-

tioned along the nasal floor do not differ significantly from
measurements obtained with the catheter positioned under
the inferior turbinate [23]. Zero chloride results in a larger
NPD response compared to low chloride solution [24]. More
detailed studies are needed to better compare results ob-
tained with the different techniques such as type of electrode
and subcutaneous needle versus a skin abrasion. The best
discriminating and most reproducible technique needs to be
identified.
Initially, the Knowles et al. [2] technique determined

manually the average PD before and after solution change
using paper strip – chart recordings. Similarly, the initial
Middleton et al. [3] technique used manual recording from a
voltmeter with the average value recorded every 15 s. More
recently, electronic recording (Powerlab) has been utilized.
However, some electronic recording systems only measure to
the nearest mV, unlike the previous systems which measured
to an accuracy of 0.1 mV. Furthermore, the optimal data

Fig. 3. Comparison of published NPD values: Compilation of basal NPD measurements (A) and the response to zero/low chloride solution and isoproterenol
(B) in normal subjects, individuals with CF and heterozygotes. Shaded area: nasal floor method, other authors measured NPD under the turbinate. Data are
means ± SD. Full references are available on request.

sampling rate (every second/5 seconds/15 seconds) has not
been clarified.
Routinely, experimental protocols are performed on both

nostrils of a test subject and then averaged to reduce
extraneous drift in the recordings. However, recently some
authors [25,26] have proposed that the nostril of a test subject
with the largest basal PD should be selected for drug and
electrolyte responses. Although the obvious advantage of this
new approach is to shorten the total duration of the test
protocol, other recent data argue that there is little correlation
between the magnitude of the basal PD and the Cl− secretory
response in an individual nostril [27].
Fluid composition has also changed between the initial

choice of Knowles et al. [2] using lactated Ringer and
Middleton et al. [3] using HEPES-buffered Krebs solution.
Importantly, removal of calcium (Ca2+) and magnesium
(Mg2+) alters the Cl− secretory response [28], while changes
in the concentration of saline also modifies ion transport in
the airways [29].
Solution changes are generally performed when the re-

sponse of the nasal epithelium has reached a maximum, using
the term “stable” though the exact definition of that stability
varies between a change of < 1 mV in 30 or 60 s. A less
subjective alternative is to use fixed perfusion times.
The influence of perfusate temperature has been examined

in a multi-centre trial which showed considerable variability
between recordings at “room temperature” and “body tem-
perature” with differences of up to 20 mV. On average, the
body temperature responses to low chloride + isoproterenol
perfusion were ∼2 mV higher [30]. Direct comparison of
body temperature versus room temperature is currently under-
way. Perfusate flow is generally 4–5 ml per minute although
Southern et al. [31] recommend lower flow rates, especially in
neonates and infants. The advantage of faster flow rates is that
washout of the previous solution is more likely to be complete
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within 10–15 s with less mixing than would occur with lower
flow rates.
Patient issues are also important. In addition to the

differentiation of groups of CF subjects from non-CF subjects,
the nasal PD has been used to study subjects with congenital
bilateral absence of the vas deferens (CBAVD) and CF
heterozygotes [32–34]. It is generally accepted that previous
nose or sinus surgery (e.g. for nasal polyps), current upper
respiratory tract infection and even mild mechanical trauma
(e.g. using a cotton bud) will remove the surface epithelium,
preventing the generation of a reproducible PD. The menstrual
cycle [35] and cigarette smoking [36] are known to alter
nasal PD. Although most protocols involve the use of
isoprenaline to stimulate Cl− secretion, the effect of nebulised
salbutamol treatment on nasal PD has not been assessed.
Topical hypertonic saline markedly alters nasal PD [29,37,38],
but the effect of therapy with hypertonic saline on subsequent
measures of nasal PD has not been examined. Interestingly,
the effects of high altitude on nasal PD [39] have even
been investigated. If the observed changes reflect underlying
hypoxia, they will have important implications.
It is generally accepted that the most important variable

which affects nasal PD measurement is the appropriate
intervention of the operator during the actual test. The
catheter should be positioned in an area with good contact
such that any gradual drifts in the recording over 15–30 s
are minimized. The subject needs to sit comfortably without
moving to keep the exploring electrode in a particular spot
within the nasal cavity during the test. Especially at higher
flow rates, the perfusate should exit the nasal cavity easily
to avoid fluid pooling at the site of measurement. In NPD
recordings where these technical aspects are not optimal, the
entire recording should be rejected. Finally, a word of caution:
good NPD recordings can be achieved from the squamous
epithelium at the anterior end of the nose, but there is little
PD response to amiloride or a low Cl− solution [27].

2.1.6. Future information needed
Further studies are necessary to delineate the mechanisms

which underlie the control of nasal PD, in particular whether
hormones or other factors alter the nasal PD response.
It will be important to establish uniform normal NPD

values and intra subject variability for CF patients and non-CF
controls after European CF centres have adopted a uniform
standard operating procedure. In addition collaboration with
the Therapeutics Development Network (TDN) of the Cystic
Fibrosis Foundation (Bethesda, USA) (CFF-TDN) is ongoing
for the use of NPD as an outcome parameter for clinical trials
aiming to correct CFTR dysfunction.
A number of studies have attempted to determine the

strength of any relationship between ion transport abnor-
malities and the severity of lung disease. Some studies
demonstrate statistical correlations between the Cl− response
and lung function [40], others show correlation with Na+

transport [26] and yet other report no correlation with ei-
ther Na+ or Cl− transport [41,42]. However, the strength
of any relationship is quite weak suggesting that measured

ion transport abnormalities may not impact on the outcome
for that individual subject. The importance of this argument
becomes apparent when recent clinical trials have used nasal
PD as a surrogate end point for correction of the CFTR
defect in CF. Unfortunately, the clinical relevance of a 5 mV
change in Cl− conductance is not known, nor is the effect of
decreasing basal PD by 4 mV. Although both changes are in
the “right” direction, it is not clear whether changes such as
these will result in any demonstrable clinical benefit. Large,
multi-national trials are thus required to determine whether
clinical benefit for the patient can be correlated with changes
in Cl− or Na+ responsiveness.

2.2. Intestinal current measurement

2.2.1. Physiologic rationale and global description
CF is characterised by abnormal chloride (Cl−) and bicar-

bonate (HCO−
3 ) transport across epithelial tissues reflecting

defects in the expression, localisation or function of CFTR
[43]. The CFTR protein is highly expressed in the apical
membrane of intestinal epithelial cells, including crypt cells
of human distal colon, where it serves as the major if not
sole cAMP-dependent electrogenic efflux pathway for Cl−
and HCO−

3 [44,45]. In the intestine, calcium (Ca
2+) agonists

(e.g. carbachol, histamine) act synergistically with cAMP
agonists (e.g. forskolin, 3-isobutyl-1-methylxanthine (IBMX))
to determine the magnitude of CFTR-mediated Cl− secretion.
Concomitant with the opening of CFTR Cl− channels in the
apical membrane by cAMP-dependent phosphorylation, the
activation of basolateral membrane potassium (K+) channels
by an increase in the intracellular Ca2+ concentration creates a
favourable electrical gradient for apical Cl− efflux by limiting
cell depolarisation [46,47]. In the apical membrane of epithe-
lial tissues from CFTR knockout mice, a compensatory upreg-
ulation of a 4,4′-diisothiocyanatostilbene-2,2′-disulfonic acid
(DIDS)-sensitive, Ca2+-activated Cl− conductance (CaCC)
has been described [48,49]. Based on this observation, some
test protocols monitor the DIDS-sensitivity of colonic Cl−
secretory currents [50–52]. In contrast to the respiratory tract,
CaCC-mediated intestinal Cl− secretion is absent in the intes-
tine of non-CF individuals and is only detectable in a small
subgroup of F508del homozygous patients characterised by a
more severe CF phenotype [51,52].
Intestinal current measurement (ICM) on rectal suction or

forceps biopsies in “micro”-Ussing chambers were introduced
about two decades ago by several research groups as a novel
ex vivo diagnostic method for CF [4,5,53–56]. Since its
inception, ICM has developed into an important functional
tool to aid the diagnosis of (i) CF patients with mild or
sub-clinical symptoms of CF and ambiguous or borderline
sweat test results and (ii) patients with unknown or rare
CFTR mutations [50,57–60]. ICM has also been employed
in genotype-phenotype studies to monitor the influence of
modifier genes in native intestinal epithelium [51,52,61],
as well as to assess the efficacy and specificity of novel
therapeutics (e.g. CFTR potentiators and correctors) [62,63].
When compared with the NPD technique, the advantages
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of ICM include i) easy accessibility of intestinal tissue at any
age, allowing its use in CF children identified by newborn
screening; ii) no or minimal tissue destruction or remodelling
triggered by bacterial or viral infections; iii) the feasibility to
test novel CFTR therapeutics in native human epithelium ex
vivo without risk to the patient (provided there is a favourable
balance between the time it takes for correctors to act vs.
duration of tissue viability); and iv) its ability to detect
very low amounts of functionally active CFTR. For example,
residual amounts of correctly spliced CFTR in a homozygous
3272-26A>G CF patient (<10% of non-CF controls) escaped
detection by Western blotting or immunocytochemistry, but
generated ∼60% of the normal Cl− secretory response in
ICM (De Jonge et al., unpublished results). On the other
hand, at CFTR protein levels above ∼20% of non-CF
controls, the CFTR conductance is no longer rate-limiting for
transepithelial Cl− transport, implying that CFTR mutations
associated with less than 80% loss of CFTR expression in the
colon would escape detection by the ICM technique. Another
limitation inherent to the ex vivo approach is the wash out of
in vivo applied test compounds from the tissue in the Ussing
chamber, resulting in underestimation of rescue efficacies of
CFTR potentiators (acting acutely, but reversibly), but not of
CFTR correctors.

2.2.2. ICM methods across Europe
ICM in Ussing chambers can be used to study CFTR dys-

function ex vivo in human rectal biopsies. Several European
CF centres have acquired comprehensive experience with
different chamber setups and protocols (50, 56, 57). Currently,

Fig. 4. Mini-Ussing chambers for rectal biopsy studies in Europe: (A) Recirculating chamber, buffer volume ∼1.5 ml/side, gassed 95% O2/5% CO2. The rectal
biopsy is mounted between two discs with exposed tissue area of 1.13 mm2. (B) Perfused chamber, buffer volume ∼1.5 ml/side, not gassed. The rectal biopsy
is mounted on a removable insert with exposed tissue area of 0.95 mm2. Both custom-made chamber designs include a water-jacketed heating system to keep
tissue-surrounding buffer at 37°C.

there are two types of micro-Ussing chambers in use for ICM
studies in Europe: the recirculating chamber [50,60,64] and
the continuously perfused chamber [5,54,56,59,65] (Fig. 4).
Other major technical variations are the use of suction versus
forceps biopsies, short circuit (zero-voltage clamping) condi-
tions versus the application of open circuit (i.e. monitoring
transepithelial voltage, Vte, and resistance), and the use of
different test protocols. In the original “Rotterdam” protocol,
cholinergic stimulation (carbachol) precedes stimulation by
cAMP agonists and histaminergic stimulation (with a DIDS
inhibitory step in between) [50], whereas in the “Freiburg”
protocol cAMP agonists are surrounded by several additions
of a Ca2+ agonist (carbachol) [56] and no inhibitory step using
DIDS is required. For detailed descriptions of both techniques
and protocols, we refer the reader to previous publications
[50,56,64].
The aim of present ongoing work performed within the

ECFS-DNWG and Workpackage 3 of EuroCareCF is to de-
scribe updated practice and differences in ICM methodology
and to compare results by a multicenter survey. Therefore, we
invited all European ICM centres to provide details of their
methodology and evaluation protocol. Because the survey
results highlighted significant differences in ICM practice
(e.g. biopsy technique, Ussing chambers, buffers, readout
parameter and evaluation protocols), it will be necessary to
standardise the ICM technique before it can be used as an
outcome parameter for clinical trials aiming to rescue CFTR
dysfunction.
Major advantages, limitations and pitfalls of the two

main techniques currently employed, i.e. short-circuit current
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(Isc) measurements in recirculating Ussing chambers versus
voltage and resistance measurements under open-circuit con-
ditions in continuously perfused Ussing chambers have been
summarised previously [50,56]. An intrinsic complication in
interpreting the electrical response of the rectal tissue is the si-
multaneous activation of Ca2+-activated apical membrane K+

channels by Ca2+-linked secretagogues. We refer the reader
to the work of Sørensen et al. [66] for information about the
molecular identity of these apical membrane K+ channels. As
no highly specific and effective inhibitors of either CFTR or
the apical membrane K+ channels are currently available for
use in native tissues, the net current response to carbachol or
histamine is a summation of Cl− and K+ secretory currents
and does not solely reflect the activity of CFTR Cl− chan-
nels. Attempts to use CFTRinh-172 [67,68] in native human
rectal tissue have been only partially successful [63], while
reasons for missing effects on Isc in a subgroup of biopsies
and the best protocol for specific CFTR inhibition remain
to be worked out. Therefore, a small amount of residual
CFTR activity might be masked by overriding K+ secretion
generating current in the opposite direction. This potential
complication is modified, but not abolished by using cAMP-
mediated responses as the primary readout of CFTR function,
considering the recently reported ability of cAMP to enhance
intracellular free Ca2+ levels adjacent to the apical membrane
through a protein kinase A-independent mechanism involving
the cAMP receptor protein Epac [69].
Furthermore, in continuously perfused Ussing chambers

extensive depletion of endogenous prostaglandins in the pres-
ence of the cyclooxygenase inhibitor indomethacin might
eventually lead to a false-positive, CF-like current response to
Ca2+-linked agonists in control biopsies [44,54,65]. Addition
of agonists increasing cAMP restore the normal, non-CF re-
sponse which is why the “Freiburg protocol” contains a third
application of carbachol in the presence of forskolin/IBMX.
Interestingly an apparent inhibition of the response to Ca2+

agonists by indomethacin has never been observed using the
recirculating chamber technique [50]. Finally, as predicted
by equivalent electrical circuit models, the measurement of
Isc is less affected by changes in paracellular leak pathways,
whereas Vte measurements are susceptible to changes in para-
cellular ion flow, which lead to a fall in shunt resistance. A
concomitant measurement of Rte is therefore mandatory. By
contrast, if the series resistance of the subepithelial tissue is
relatively large compared with that of the epithelium, incom-
plete short-circuiting will occur and result in underestimation
of the transcellular current [70]. In this situation, the potential
drop across the epithelium might not be very different from
the open-circuit situation.

2.2.3. ICM as a diagnostic tool for CF: reference data
To date, ICM had been mainly used for research purposes

to determine CFTR function in genotype-phenotype studies
[51,57,59,61,71]. These studies highlight the applicability of
ICM as a diagnostic tool for CF, including the identification
of individuals presenting with milder forms of CF (e.g.
CFTR mutations associated with pancreatic sufficiency (PS)).

By contrast, obligate heterozygotes and controls are not
distinguishable by ICM [72]. Several European CF centres
introduced ICM into their diagnostic workup of patients
with questionable CF [50,56,58,73], based on individual
experience and preliminary reference data mainly obtained in
pancreatic-insufficient (PI) CF patients and healthy controls
(Fig. 5). ICM was discussed, but not included in the present
diagnostic algorithm and consensus criteria [1,12,74].
Recently, the diagnostic reliability of a standardised ICM

protocol [50] was prospectively investigated in a large co-
hort of PS-CF and PI-CF patients, healthy controls and
individuals with questionable CF, presenting with mild symp-
toms and equivocal results in standard diagnostic tests [60].
For additional validation, extensive CFTR genotype analysis
was performed in all subjects with questionable CF. This
study was the first to describe the cumulative value of the
Cl− secretory responses �Isc carbachol, �Isc cAMP/forskolin and
�Isc histamine (Isc carb+cAMP+hista) as the best diagnostic ICM
marker with a clear cut off value of 34 μA/cm2 between
PS-CF and control subjects [60]. It also summarised reference
values from previous studies obtained by the CF centres in
Rotterdam and Hannover.
ICM can be performed without sedation in patients of all

ages starting at the time of CF newborn screening. Moreover,
the applicability of ICM to young children is a notable
advantage over the NPD technique. Further reference data
for different standardised evaluation protocols, registration
modes and the whole phenotypic range including subjects
with PS-CF and CFTR-related diseases will help to establish
the ICM test in the diagnostic workup of individuals in whom
the diagnosis of CF is difficult.

2.2.4. ICM outcome protocols for evaluation of CFTR
modulating drugs
The “Rotterdam” ICM protocol for CF diagnosis [50] has

been successfully used for more than a decade. However,
application of this protocol in recirculating Ussing chambers
on biopsies from healthy controls results in a variable and
often rather high level of basal current, concomitant with a
low or occasionally absent response to 8-Br-cAMP/forskolin
(controls: 7.1± 8.2 μA/cm2; CF: 3.0± 2.9 μA/cm2; means
± SD; n = 55) which compares unfavourably with the more
reproducible and discriminative Isc response to carbachol
(controls: 43.9± 18.9 μA/cm2; CF: −4.6± 7.4 μA/cm2;
n = 55). To interpret these findings, we assume that in fresh
biopsies, maintained in optimal condition, the cAMP pathway
for CFTR activation is partially pre-activated by endogenous
secretagogues, despite the use of the PGE2 synthesis in-
hibitor indomethacin. This is apparently not the case for the
carbachol/Ca2+ pathway, which acts mainly by opening of K+

channels in the basolateral membrane to enhance the electrical
driving force for Cl− exit through CFTR Cl− channels in
the apical membrane. Another explanation might be that the
continuous presence of carbachol in the recirculating chamber
leads to a persistent activation of the tissue leading to a
somewhat blunted response to other agonists. In the perfused
Ussing chamber using the “Freiburg” protocol, the response
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Fig. 5. Bioelectric measurements on rectal biopsies from normal subjects and individuals with CF: (A) Short-circuit current (Isc) recordings in recirculating
Ussing chamber in the presence of indomethacin (10 μM added to the basolateral (BL) bathing solution before the start of the measurement) and amiloride
(100 μM added to the luminal (L) bathing solution). Chloride secretion is stimulated with carbachol (100 μM BL), histamine (500 μM BL) in the presence
of DIDS (200 μM L) and 8-Br-cAMP (1 mM L+BL)/forskolin (10 μM BL). Transepithelial resistance (Rte) is measured directly before and after the Isc
recording. (B) Open-circuit (Vte) and periodical transepithelial resistance recordings (�Vte upon short 0.5 μA current impulses, indicated by the vertical bars
at the end of the recording) in perfused Ussing chambers. The horizontal bars below the recording indicate the addition of i) carbachol (100 μM BL) in the
presence of amiloride (10 μM L), ii) forskolin (5 μM, BL)/IBMX (100 μM BL) in the presence of amiloride and indomethacin (1 μM BL), and iii) carbachol
(100 μM BL) in the presence of amiloride, indomethacin and forskolin/IBMX. Rte is continuously calculated using Ohm’s law (Rte = �Vte/0.5 μA).

to cAMP correlates well and is reproducible with the effect of
carbachol.
The lack of a prominent cAMP effect using recirculating

Ussing chambers is a major drawback for the introduction
of ICM as an outcome parameter in clinical trials of CFTR
potentiators and correctors. A modest drug-induced increase
in carbachol-induced secretion could be interpreted as an
increase in CFTR activity, induction of CaCCs, and/or a
stimulation of Ca2+-activated K+ channels in the basolat-
eral membrane. If the drug treatment additionally promoted
forskolin/cAMP-induced secretion, this would virtually ex-
clude effects on CaCCs and Ca2+-activated K+ channels, and
would enhance the CFTR specificity of the assay.
The Rotterdam group has therefore introduced a new

ICM “outcome” protocol (Table 2) which better accentuates
forskolin-induced current responses in comparison with the
“diagnostic” protocol (5x increase), and further improves the
response to carbachol by ∼1.5 fold. This goal was reached by
recurrent washings of the tissue with fresh perfusion buffer,
and extending the equilibration time prior to the washings.
However, the amiloride/carbachol addition was maintained in
the pre-washing phase to allow discrimination of the correct
orientation of the biopsy, and its reactivity. For example, if
both the pre-equilibration amiloride and carbachol responses

Table 2
Example of new ICM outcome protocol for evaluation of CFTR pharma-
cotherapy in a recirculating Ussing chamber system (de Jonge): Compounds
are added cumulatively, unless washing out and refreshing of medium is per-
formed by pipette as indicated. Basolateral bathing solution always contains
indomethacin

Additions* Concentration Time of addition
(μM) (min)

– – 0
Amiloride (L) 10 5
Carbachol (L+BL) 200 15
Wash (2× fast) Refresh medium (L+BL) 35

(∼2ml each side)
Wash (1×) Idem 45
Wash (1×) Idem 55
Amiloride (L) 10 65
Forskolin (L+BL) 2 75
Potentiator: test compound Variable (test compound) 85
or genistein (L+BL) 50 (genistein) 85

Carbachol (L+BL) 200 100
CFTRinh-172 (L+BL) 20 120

*L = luminal; BL = basolateral.

were absent, the biopsy was considered unsuitable for further
experimentation. Although experience with this new protocol
is still limited, the results so far demonstrate a considerable
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improvement in both the Isc responses to forskolin + genistein
(�Isc forskolin+ genistein: controls, 34.1± 11 μA/cm2; F508del
homozygotes, −1.9± 9.3 μA/cm2; n = 5) and carbachol
(�Isc carbacholin the presence of forskolin+genistein: 66.5±
17.0 μA/cm2; F508del homozygotes −12.4± 4.4 μA/cm2;
n = 5) as compared with the historical data obtained with the
diagnostic protocol. A similar “outcome” protocol has been
developed by the Hannover group for the ex vivo analysis of
CFTR potentiators and correctors by Isc measurements in the
perfused Ussing chamber [63].

2.2.5. Standardisation of the ICM technique
The European multicenter efforts to improve the ICM

method presented in this document were used to start the
harmonisation of the ICM technique in Europe. Hereby, we
will focus on further evaluation of ICM as a diagnostic test
for questionable CF and possibly CFTR-related diseases [34]
which will be promoted within the ECFS-DNWG. Refine-
ments in methodology and more standardised measurements
according to a common consensus protocol will help to facili-
tate the harmonisation process. In close collaboration between
the ECFS-DNWG, the ECFS-Clinical Trials Network and the
CFF-TDN, we aim to develop and validate a standard operat-
ing procedure for the use of ICM as an outcome parameter for
clinical trials aiming to correct CFTR dysfunction.

2.2.6. Further information needed
At this stage an in-depth evaluation of the reproducibility

of the ICM technique (intra- and interassay variation), im-
proved knowledge of the possible dependency of the colonic
Cl− secretory capacity on gender and age, and more insight
into the feasibility to discriminate between Cl− and HCO−

3
secretory currents is urgently needed. Another basic question,
triggered by the commonly observed poor sensitivity of the
Cl− secretory response in rectal biopsies to current CFTR
inhibitors, is whether the anion secretory current in human
colon is carried almost exclusively by CFTR, as suggested by
the absence of current in most CF patients, or whether it is
generated, in part, by other types of Cl− channels that are
functionally dependent on CFTR and/or are down-regulated
in CF patients. The recent expansion of the ICM technique to
multiple CF centres in Europe and to CFF-TDN centres in the
USA will be of great help in resolving such questions.

3. Sweat duct potential difference and skin conductance

With increasing diagnostic challenges and new candidate
drugs for CF, there is a clear need for new, reliable and simple
biomarkers of defective ion transport. Thus, the CF sweat duct
is now being evaluated using assays other than the standard
sweat test for measuring Cl− concentration [9]. The increased
negative bioelectric potential in the CF sweat duct can be
assessed by transductal voltage measurement of stimulated
sweat glands at the skin surface as described by Gonska et
al [75]. The sweat gland PD was measured during 30 min
as the voltage between 2 electrodes, one taped over an area
of skin previously stimulated by iontophoresing pilocarpine,

and the other inserted subcutaneously by needle puncture.
Sweat gland PD was similar to sweat Cl− concentration in
distinguishing between control and CF subjects. Sequential
stimulation of sweating with cholinergic (by pilocarpine) and
β-adrenergic agonists further improved the diagnostic perfor-
mance of the test. The sweat duct can also be explored by
active electrophysiology, i.e. measurement of electrochemical
skin conductance after application of a low direct current
voltage as described by Hubert et al. [76]. A low voltage is
applied between 2 nickel electrodes on which the patient has
put their hands or feet. This low voltage generates a current
due to ion movements that in the skin originate from sweat
duct pores. This current is measured and electrochemical skin
conductance calculated. The test is painless and takes less
than 5 min. When control and CF subjects are studied, the
assay provides a diagnostic specificity of 1 and a sensitivity
of 0.93. To date, proof-of-concept of these two new simple
and practical real-time assays has only been shown in adults.
However, results with these new tests appear promising and
justify further development as outcome parameters in clinical
trials and as diagnostic tests for CF.

4. Highly parallel sequencing

In current, routine CFTR mutation testing, mutation-
specific tests are used, i.e. the presence or absence of (a) given
mutation(s) is tested. More than 1600 mutations have been
identified in the CFTR gene. Screening all these mutations
by mutation-specific tests in an individual is unrealistic.
Fortunately, in most populations screening for a set of about
30 mutations achieves a combined sensitivity of 85–92% of
detecting a CF-disease-causing mutation in a mutant CFTR
gene. These mutations are screened for in most (commercial)
mutation-specific CFTR tests. A negative genetic test result
therefore does not exclude the presence of a CFTR mutation.
A higher mutation detection sensitivity is obtained when the
complete coding region, and exon/intron junctions, of the
CFTR gene is scanned or sequenced for the presence of
mutations. These techniques are laborious and expensive, and
in most populations only used in individuals when selected
clinical indications are met.
In fact, many clinicians favour screening for a set of well-

characterized mutations only. Indeed, complete sequencing
may identify mutations whose pathological consequences
are unclear, i.e. are these mutations CF-causing, innocent
polymorphisms, or mild mutations that cause CFTR-related
disease? This especially applies to missense mutations. A
further complication is that other genes than CFTR might be
involved in disease in a small fraction of patients [77,78].
Sanger sequencing dominated sequencing for 30 years. In

recent years, several next-generation sequencing technologies
have been, and are being, developed at extraordinary speed.
By 2015, it is expected that a complete human genome,
including an individual’s complete CFTR gene, will be se-
quenced for � 1000. Thus, the cost of sequencing the CFTR
gene alone will become equivalent or cheaper than mutation-
specific CFTR tests, and from an economic point of view, very
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likely become the preferred genetic test. We will then have to
deal with rarer mutations or (missense) mutations of which
the functional consequences are unknown and can only be de-
termined by functional tests. This problem is being addressed,
in part, by the CFTR2 (Clinical and Functional Translation of
CFTR) project, which seeks to provide complete, advanced
and expert-reviewed functional and clinical information on
a large set of CFTR mutations. Fortunately, about 28% of
all CFTR mutations identified so far are frameshift muta-
tions, nonsense mutations or large insertions and deletions, of
which the pathological consequences can be predicted without
functional studies. This also applies for splice-site mutations
in which the first or second nucleotide of the splice site
is mutated (about 12.5% of all CFTR mutations are splice
mutations). Identification of such a mutation after sequencing
alone, even if it is a previously unknown or very rare muta-
tion, clearly has added value. On the other hand, about 15% of
the mutations in the CFTR mutation database are classified as
sequence variations. The majority of these are missense muta-
tions. Together with the rare CF-causing missense mutations
(found in less than 5 mutant CFTR genes worldwide), they
will thus remain a challenge in genetic counselling. A possible
(temporary) solution is that CFTR sequencing is performed
on the condition that the detection of rare missense mutations
with unknown functional consequences is not reported.
The human genome, and its phenotypic expression, is so

complex that a genetic test with 100% sensitivity will likely
remain illusive and thus can only be approximated. In the end,
the main challenge of the use, interpretation, understanding
and communication of CFTR genetic test results will be the
understanding of their limitations.

5. Diagnostic value of non genetic blood tests

Genotyping is complex and it is frequently difficult to
interpret the identified mutations. At present in vivo CFTR
bio-assays are time consuming, cumbersome and technically
demanding. Therefore, they are only available in selected CF
centres. There is thus great demand for non genetic blood
tests that distinguish between CF and non CF subjects. As an
example we highlight approaches.

5.1. Measurement of CFTR expression and function in human
leucocytes and erythrocytes

Verloo et al. [79] were the first to identify a CFTR-
like linear chloride conductance in the plasma membrane
of human erythrocytes that was activated upon Plasmodium
falciparum infection and defective in CF patients. Stumpf et
al. [80] explored the presence of functional CFTR in human
erythrocytes as a diagnostic test. The principle behind this
test is the hemolysis of erythrocytes induced by gadolinium
(Gd3+) ions. Erythrocytes from CF patients are more resistant
to Gd3+-induced hemolysis than erythrocytes from healthy
donors. In another approach, the authors demonstrated the
differential Zn2+ sensitivity of Gd3+-induced hemolysis for
non-CF and CF erythrocytes.

Another approach recently proposed is based on the ob-
servation that leucocytes express detectable levels of CFTR
[81]. Using immunoprecipitation and flow cytometry, Sorio
et al. [82] provided preliminary data on CFTR expression
and function ex vivo in leucocytes from healthy subjects
and CF patients. Flow cytometry, Western blotting and cell
membrane depolarization was evaluated by single-cell fluo-
rescence imaging using the potential-sensitive probe bis-(1,3-
diethylthiobarbituric acid) trimethine oxonol (DiSBAC2). The
authors detected higher levels of CFTR expression in mono-
cytes and lymphocytes compared to polymorphonuclear cells
[82]. The cell membrane depolarization assay demonstrated
functional response only in monocytes from healthy controls
and, to a lesser extent, from obligate CF heterozygotes. Of
relevance, monocytes from CF patients showed a completely
different pattern of response permitting the correct classifi-
cation of healthy and diseased subjects [82]. As a reference,
the authors measured NPD in selected subjects in parallel to
the monocyte assay and always obtained consistent results.
These findings suggest that evaluation of CFTR expression
and function in monocytes by flow cytometry and optical
techniques, respectively, might represent new approaches to
diagnose CFTR dysfunction and evaluate the effects of drugs
on CFTR expression and function.
These tests might also be of additional help to better

diagnose CF.

6. Conclusion

The CF diagnostic armamentarium is increasing and is
being applied not only for diagnosis, but also as an outcome
parameter in trials with CFTR modulators.
NPD and ICM are being evaluated extensively. There

is a clear need to establish common standard operating
procedures for these techniques. The EuroCareCF project
greatly facilitated this evolution. Also the sweat gland is
being studied in a new way. Genetic analysis is accelerating,
but linking genetic and clinical data will be even more
important to understand the significance of (minor) changes
in the DNA sequence of the CFTR gene. Finally, CFTR
expression in leucocytes and erythrocytes raises the possibility
of developing non genetic blood tests to diagnose CF and
evaluate new therapies for the disease.
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