

Title:

Nonsense mutations accelerate lung disease and decrease survival of Cystic Fibrosis children

Lay Title:

STOP Codon mutations are associated with more severe disease from childhood in people with cystic fibrosis

Authors:

Annalisa Orenti^{1*}, Iwona Pranke^{2,3*}, Caroline Faucon⁴, Jessica Varilh⁵, Aurelie Hatton^{2,3}, Anita Golec^{2,3},, Clemence Dehillotte⁶, Isabelle Durieu^{7,8}, Philippe Reix⁷, Pierre-Régis Burgel^{9,10,11}, Dominique Grenet¹², Céline Tasset¹³, Elsa Gachelin¹⁴, Caroline Perisson¹³, Agathe Lepissier^{2,3}, Elise Dreano^{2,3}, Danielle Tondelier^{2,3}, Benoit Chevalier^{2,3}, Laurence Weiss¹⁵, Sébastien Kiefer¹⁶, Muriel Laurans⁴, Raphael Chiron¹⁷, Lydie Lemonnier⁶, Christophe Marguet¹⁸, Andreas Jung^{19,20}, Aleksander Edelman^{2,3}, Bat-Sheva Kerem²¹, Emmanuelle Girodon²², Magalie Taulan-Cadars⁵, Alexandre Hinzpeter^{2,3}, Eitan Kerem²³, Lutz Naehrlich^{20,24}, Isabelle Sermet-Gaudelus^{2,3,11}, on behalf of ECFSPR Steering group^{**}

Affiliations:

¹ Department of Clinical Sciences and Community Health, Laboratory of Medical Statistics, Biometry and Epidemiology "G. A. Maccacaro", University of Milan, Milan, Italy.

²Université de Paris, CNRS, INSERM U-1151, Institut Necker-Enfants Malades, Paris, France

³Centre de Référence Maladies Rares, Mucoviscidose et affections liées à CFTR, Hôpital Necker Enfants Malades, Assistance Publique-Hôpitaux de Paris, Paris, France

⁴Centre de Ressources et de Compétences de la Mucoviscidose, Centre Hospitalier Universitaire de Caen Normandie, Caen, France

⁵EA 7402 Université de Montpellier, Montpellier, France

⁶Vaincre La Mucoviscidose, Paris, France

⁷Centre de Référence Maladies Rares Mucoviscidose et affections liées à CFTR, Hospices Civils de Lyon, Pierre-Bénite, France

⁸EA HESPER -Université Claude Bernard Lyon 1, Université de Lyon, France

⁹Department of Respiratory Medicine and National Reference Center for Cystic Fibrosis, Assistance Publique-Hôpitaux de Paris, Paris, France

¹⁰Institut Cochin, Université Paris Cité and Inserm U1016, Paris, France

¹¹ERN-Lung CF network

¹²Centre de Ressources et de Compétences de la Mucoviscidose, Hôpital Foch, Suresnes, France

Cystic Fibrosis Research News

- ¹³Centre de Ressources et de Compétences de la Mucoviscidose, Centre Hospitalier Universitaire Sud Reunion, Saint-Pierre, France
- ¹⁴ Centre de Ressources et de Compétences de la Mucoviscidose, Centre Hospitalier Universitaire Felix Guyon, Saint-Denis, France
- ¹⁵ Centre de Ressources et de Compétences de la Mucoviscidose, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
- ¹⁶Centre de Ressources et de Compétences de la Mucoviscidose, Centre Hospitalier Universitaire de Nancy, Nancy, France
- ¹⁷ Centre de Ressources et de Compétences de la Mucoviscidose. Centre Hospitalier Universitaire de Montpellier, Montpellier, France
- ¹⁸Centre de Ressources et de Compétences de la Mucoviscidose, Centre Hospitalier Universitaire Charles Nicolle, Rouen, France
- ¹⁹ Pediatric Respiratory Medicine, Kinderspital, Zurich, Switzerland
- ²⁰ European Cystic Fibrosis Society Patients Registry
- ²¹Department of Genetics, The Life Science Institute, The Hebrew University, Jerusalem Israel
- ²²Molecular Genetics Laboratory, Cochin Hospital, Assistance Publique-Hôpitaux de Paris, Université de Paris, Paris, France
- ^{23.} Division of Pediatrics, Hadassah Hebrew University Medical Center, Jerusalem, Israel
- ²⁴Y Justus-Liebig-University Giessen, Department of Pediatrics, Giessen, Germany

What was your research question?

We aimed to study disease severity of people with CF (pwCF) who carry a nonsense mutation on both copies of the gene (alleles) compared to pwCF with other *CFTR* mutations.

Why is this important?

Nearly 5% of people with CF (pwCF) worldwide carry a nonsense mutation on both alleles) resulting in a premature termination codon (PTC). For these pwCF, no efficient CFTR targeted therapy is available yet.

What did you do?

We investigated clinical outcomes such as lung function and mortality of pwCF carrying *CFTR* nonsense mutations resulting in PTCs on both alleles (PTC/PTC), pwCF who are compound heterozygous for F508del and PTC (F508del/PTC), and pwCF homozygous for F508del (F508del+/+), based on the European CF Society Patient Registry (ECFSPR) database. We also analyzed CFTR activity of specific PTC/PTC genotypes. We specifically focused on genotypes

leading to incomplete CFTR proteins at, or downstream of codon 1162 (e.g., E585X/R1066C genotypes), which have been shown to be partially functional.

Based on the ECFSPR clinical data of pwCF living in high and middle income European and neighbouring countries, PTC/PTC (n=657) were compared with F508del+/+ (n=21,317) and F508del/PTC(n=4254). CFTR mRNA and protein activity levels were assessed in primary human nasal epithelial (HNE) cells sampled from 22 PTC/PTC pwCF.

What did you find?

As compared to pwCF with F508del on both alleles(F508del +/+), both PTC/PTC and F508del/PTC pwCF exhibited a significantly faster rate of decline in Forced Expiratory Volume in 1 s (FEV₁) from 7 years of age, and probably earlier. This resulted in lower FEV₁ values in adulthood. The mortality rate of paediatric pwCF with one or two PTC alleles was higher than those with the F508del+/+ genotypes. Infection with *Pseudomonas aeruginosa* was more frequent in PTC/PTC *versus* F508del+/+ and F508del/PTC pwCF. CFTR activity in PTC/PTC pwCF's HNE cells was very low and ranged between 0% to 3% of the expected level. TheE585X/R1066C and Y275X/S466X genotypes had the highest CFTR activities.

What does this mean and reasons for caution?

This is the largest study until now comparing the disease severity of pwCF carrying 1 or 2PTCs compared to F508del homozygotes.

Our study has the inherent limitations of a retrospective (using information on events that have taken place in the place) registry study from different countries. The impact of differences between country such as delay in diagnosis or genotyping, neonatal screening implementation, differences in treatment practices cannot be excluded in interpretation of childhood survival and lung function rates of change. This is counterbalanced by the very large number of pwCF included in the study, the high quality of data collection, and the fact that we only considered high and middle income countries with access to diagnosis, genetic screening and to treatment.

What's next?

Altogether, our findings support implementation of aggressive treatment from birth in children carrying a *CFTR* non sense mutation and of the urgent need for more research on alternative treatments to CFTR modulators. Nevertheless, the possibility of a positive response to CFTR modulators needs to be investigated for specific PTC variants. Early initiation of CFTR modulators in children with PTC/F508del mutations, to slow down the progression of the disease, should be investigated.

Original manuscript citation in PubMed https://pubmed.ncbi.nlm.nih.gov/37422433/