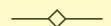
IMPACT OF THE
ELEXACAFTOR/TEZACAFTOR/IVACAFTOR ON THE
NUTRITION PARAMETERS AND
GASTROINTESTINAL SYMPTOMS IN ADULT CYSTIC
FIBROSIS PATIENTS IN CF CENTRE BRNO, CZECH
REPUBLIC


NELA STASTNA

LUMIR KUNOVSKY, MICHAL SVOBODA, EVA POKOJOVA, LUKAS HOMOLA, MIRIAM MALA, ZANETA GRACOVA, BARBORA JERABKOVA, JANA SKRICKOVA, JAN TRNA

CONFLICT OF INTERESTS

- All authors declare that they have no conflicts of interest.

A SINGLE-CENTER, PROSPECTIVE OBSERVATIONAL STUDY

HYPOTHESIS:

- IMPROVEMENT OF NUTRITIONAL PARAMETERS AND GI SYMPTOMS
 - REDUCTION OF PERT
 - IMPROVEMENT OF EXOCRINE PANCREATIC FUNCTION IS QUESTIONABLE

ENROLMENT

- 29 ADULT CF PATIENTS (55.2% WOMEN, 51.7% HOMOZYGOUS FOR F508del)
- MEAN AGE 29.1 YEARS
- MEAN FEV1 66.8%
- 82.8% EXOCRINE PANCREATIC INSUFFICIENCY
- 100% pwCF: ELEXA/TEZA/IVA (EMA-APPROVED)
- PRE-TREATMENT:
- 51.7% CFTRm' NAIVE
- 3.4% IVA, 17.2% LUMA/IVA, 27.5% TEZA/IVA

RESULTS

	Valid N	Mean (SD)	Median (Range)	Р
Total protein (g/L)	N=27	-3.29 (4.56)	-3.90 (-12.70; 7.80)	<0.001
Albumin (g/L)	N=27	2.81 (3.37)	2.70 (-5.40; 9.30)	<0.001
Prealbumin (g/L)	N=27	0.06 (0.04)	0.07 (-0.02; 0.15)	<0.001
Body weight (kg)	N=29	3.51 (4.25)	4.00 (-3.00; 17.00)	<0.001
BMI (kg/m²)	N=28	1.20 (1.36)	1.10 (-1.10; 5.10)	<0.001
Lipase (unit/kg/day)	N=24	-1 968.56 (2 443.55)	-1 475.91 (-9 752.08; 2 857.36)	<0.001
Bowel movement	N=28	-1.18 (1.68)	-1.00 (-9.00; 0.00)	<0.001

Total protein, albumin, prealbumin, body weight, BMI, bowel movements: 24 weeks

Lipase dose: 48 weeks

RESULTS

		Valid N	Mean (SD)	Median (Range)
Total protein (g/L)	0 week	N=29	77.3 (5.0)	77.1 (69.5; 93.4)
	24 week	N=27	74.3 (5.1)	73.9 (64.4; 87.0)
Albumin (g/L)	0 week	N=29	45.9 (2.8)	46.0 (40.2; 50.7)
	24 week	N=27	48.7 (3.8)	48.8 (36.5; 56.6)
Prealbumin (g/L)	0 week	N=29	0.2 (0.1)	0.2 (0.1; 0.3)
	24 week	N=27	0.3 (0.0)	0.3 (0.2; 0.4)
Body weight (kg)	0 week	N=29	66.6 (13.6)	65.0 (48.0; 96.0)
	24 week	N=29	70.1 (14.0)	67.0 (49.0; 98.0)
BMI (kg/m²)	0 week	N=28	23.0 (3.7)	22.5 (16.3; 31.0)
	24 week	N=28	24.2 (3.6)	23.6 (18.3; 32.7)
Lipase	0 week	N=24	7 471.1 (4 108.5)	7 340.3
(unit/kg/day)	O WEEK	14-24	7 471.1 (4 100.5)	(1 388.9; 15 671.6)
	48 week	N=22	6 002.8 (3 926.9)	5 150.5
				(669.0; 18 529.0)
Bowel movement	0 week	N=29	2.8 (1.7)	2.5 (1.0; 10.0)
	24 week	N=28	1.6 (0.9)	1.0 (1.0; 4.5)

RESULTS

	Number of improved patients	Number of patients	Ratio of improved patients	Reference value	Р
FE-1 improvement	1	22	4.5%	0.0%	<0.001

		FE-1 (μg/g) – 48 <u>week</u>	
		<200	>200
FE-1 (μg/g) – 0 week	<200	20 (90.9%)	1 (4.5%)
	>200	0 (0.0%)	1 (4.5%)

FE-1: week 48

PANCREATIC FUNCTION RESTORATION? – CASE REPORT

- FEMALE, 36 YEARS OLD, F508del/3849+10kb C>T
- AGE 16: exocrine pancreatic insufficiency, stool 2 per day, PERT initiated (2400 IU/kg/day), body weight 58 kg, BMI 22.4
- AGE 26: CFRD, incipient diabetic neuropathy, insulin treatment (insulinum glarginum 6 IU, HbA1c 43mmol/mol)
- AGE 35:TEZACAFTOR/IVACAFTOR
- AGE 36: ELEXACAFTOR/TEZACAFTOR/IVACAFTOR, body weight 70kg, BMI 25.1

PANCREATIC FUNCTION RESTORATION? – CASE REPORT

- WEEK 24: FE-1 419 μg/g
- WEEK 32: FE-1 442 μg/g
- PERT stopped, HBA1c and insulin dose decreased (insulinum glarginum 4 IU, HbA1c 36mmol/mol)
- albumin 43.8 > 46.4 g/L, prealbumin 0.17 > 0.24 g/L, total protein 73.9 > 73.1 g/L, body weight 66 > 63 kg, BMI 23.6 > 22.5

FE-1 45μg/g FE-1 419μg/g 442μg/g

EXOCRINE PANCREATIC INSUFFICIENCY

- Exocrine pancreatic insufficiency (EPI) is seen in 85% pwCF
- EPI leads to malabsorpion and poor weight gain
- It is widely held view that EPI is irreversible due to complete destruction of pancreatic ducts and acinar cells
- The residual pancreatic function of 1–5% is required for pancreatic sufficient function ¹

[1] Sergeev V, Chou FY, Lam GY. The extrapulmonary effects of cystic fibrosis transmembrane conductance regulator modulators in cystic fibrosis. Ann Am Thorac Soc 2020

IMPROVEMENT IN FECAL ELASTASE

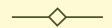
- <u>IVACAFTOR</u>: age 1-24 months by 164-166 μ g/g (77.8% pwCF)^{1,2}, age 2-5 years by 199.8 μ g/g ³, age 18+ no significant change ⁴
- LUMA / IVA: age 1-2 years by 73.1 μ g/g ⁵, age 2-5 years by 52.6 μ g/g ⁶
- TEZA / IVA: no significant change ⁷
- ELEXA / TEZA / IVA: no significant change 8
- increase in FE-1 observed by week 2 and sustained through week 24 ^{1,2}
- [1] Rosenfeld M, Wainwright CE, Higgins M et al. Ivacaftor treatment of cystic fibrosis in children aged 12 to <24 months and with a CFTR gating mutation (ARRIVAL): a phase 3 single-armed study. Lancet Resp Med 2018
- [2] Rosenfeld M, Wainwright CE, Higgins M, et al. Ivacaftor treatment of cystic fibrosis in children aged 12 to <24 months and with a CFTR gating mutation (ARRIVAL): a phase 3 single-arm study. Lancet Respir Med. 2018
- [3] Davis JC, Cunningham S, Harris WT et al. Safety, pharmacokinetics, and pharmacodynamics of ivacaftor in patients aged 2-5 years with cystic fibrosis and CFTR gating mutation (KIWI): an open label, single-arm study. Lancet Respir Med 2016
- [4] Stallings VA, Sainath N, Oberle M. Energy balance and mechanisms of weight gain with ivacaftor treatment of cystic fibrosis gating mutations. J Pediatr 2018.
- [5] Rayment JH, Asfour F, Rosenfeld M, et al; VX16-809-122 Study Group. A phase 3, open-label study of lumacaftor/ivacaftor in children 1 to less than 2 years of age with cystic fibrosis homozygous for F508del-CFTR. Am J Respir Crit Care Med. 2022
- [6] McNamara JJ, McColley SA, Marigowda G, et al. Safety, pharmacokinetics, and pharmacodynamics of lumacaftor combination therapy in children aged 2-5 years with cystic fibrosis homozygous for F508del-CFTR: an open-label phase 3 study. Lancet Respir Med. 2019
- [7] Davies JC, Sermet-Gaudelus I, Naehrlich L, A phase 3, double-blind, parallel-group study to evaluate the efficacy and safety of tezacaftor in combination with ivacaftor in participants 6 through 11 years of age with cystic fibrosis homozygous for F508del or heterozygous for the F508del-CFTR mutation and a residual function mutation,

Journal of Cystic Fibrosis, 2021

[8] Schwarzenberg SJ, Vu PT, Skalland M, Hoffman LR, Pope C, Gelfond D, Narkewicz MR, et al. Elexacaftor/ivacaftor and gastrointestinal outcomes in cystic fibrosis: Report of promise-GI. J Cyst Fibros. 2022

PANCREATIC FUNCTION RESTORATION

- Younger patients and borderline pancreatic insufficiency can be rescued
- We are facing the challenging fact whether CFTRm' can restore pancreatic function past the childhood
- The mechanism of function restoration might be caused by improved pancreatic duct cell function with subsequent improvement in acinar cell function or enhanced CFTR-mediated bicarbonate function ^{1,2}


^[1] Ramsey ML, Li SS, Fara LF,. Cystic fibrosis transmembrane conductance regulator modulators and the exocrine pankreas: A scoping review. J Cyst Fibros, 2022.

^[2] Gelfond D, Heltsche S, Ma C. Impact of CFTR modulation on intestinal pH, motility and clinical outcomes in patients with cystic fibrosis and the G551D mutation. Clin Transl Gastroenterol 2017.

THE MECHANISM OF INCREASED NUTRIONAL PARAMETERS IS MULTIFACTORIAL

- Poor nutritional status is associated with increased pancreatic dysfunction clinical outcome and risk of mortality
- Improved appetite higher food intake
- Improved lung clearance better exercise tolerance, gain musculoskeletal system
- Decreased chronic inflammation leads to reduction in energy expediture needed for respiratory muscle work
- Leads to sustaible energy management

DISCUSSION & LIMITATION

- Albumin and total protein are markers associated with inflammation

 Lack of data
 on dietary intake to objectivise selftitrated PERT

- Absence of additional FE-1 measurement during previous CFTRm'

- Faecal steatocrit and calprotectin weren't observed

CONCLUSION

- STATISTICALLY SIGNIFICANT IMPROVEMENT OF NUTRITIONAL PARAMETERS

- STATISTICALLY SIGNIFICANT

DECREASED THE NEED OD WEIGHTADJUSTED DOSE OF
LIPASE SUPPLEMENTATION AND
NUMBER OF BOWEL MOVEMENTS

- IMPROVEMENT OF FE-1 VALUE IN 1 ADULT PATIENT (4.5%)

TAKE HOME MESSAGE

- THERE MIGHT BE A POTENTIAL FOR IMPROVEMENT IN ADULTS

- PANCREATIC FUNCTION COULD BE MORE DYNAMIC THAN PREVIOUSLY THOUGHT

- FURTHER RESEARCH ARE
NEEDED TO DETERMINE WHETHER
CFTRm' CAN IMPROVE PANCREATIC
FUNCTION

